EEG-Based Emotion Recognition via Knowledge-Integrated Interpretable Method

نویسندگان

چکیده

Despite achieving success in many domains, deep learning models remain mostly black boxes, especially electroencephalogram (EEG)-related tasks. Meanwhile, understanding the reasons behind model predictions is quite crucial assessing trust and performance promotion EEG-related In this work, we explore use of representative interpretable to analyze behavior convolutional neural networks (CNN) EEG-based emotion recognition. According analysis, find that similar features captured by our state-of-the-art are consistent with previous brain science findings. Next, propose a new integrating knowledge interpretability analysis results process. Our knowledge-integrated achieves better recognition accuracy on standard datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG-based Emotion Recognition pdfsubject

In the area of human-computer interaction information about the emotional state of a user becomes more and more important. For instance, this information could be used to make communication with computers more human-like or to make computer learning environments more effective. This thesis proposes an emotion recognition system from electroencephalographic (EEG) signals. Emotional states were i...

متن کامل

EEG-Based Emotion Recognition during Music Listening

In Music Emotion Research, the goal is to quantify and explain how music influences our emotional states. Scientists realize that human brain is relevant to emotion, and it leads to the study of human emotion by capturing information from brain. Electroencephalogram (EEG) is an efficient tool to capture brainwave. This research proposes a framework to recognize human emotions during music liste...

متن کامل

Emotion recognition method using entropy analysis of EEG signals

This paper proposes an emotion recognition system using EEG signals, therefore a new approach to emotion state analysis by approximate (ApEn) and wavelet entropy (WE) is described. We have used EEG signals recorded during emotion in five channels (FP1, FP2, T3, T4 and Pz), under pictures induction environment (calmneutral and negative excited) for participants. After a brief introduction to the...

متن کامل

ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition

Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition perf...

متن کامل

Comparison of Classification Methods for EEG-based Emotion Recognition

In this paper, we review different classification methods for emotion recognition from EEG and perform a detailed comparison of these methods on a relatively larger dataset of 45 experiments. We propose to combine the classifiers using stacking to improve the emotion recognition accuracies. Experimental results show that the combination of classifiers using stacking can achieve higher average a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11061424